
MATHEMATICS OF COMPUTATION 
VOLUME 55, NUMBER 192 
OCTOBER 1990, PAGES 765-781 

THE LOCAL HURWITZ CONSTANT AND 
DIOPHANTINE APPROXIMATION ON HECKE GROUPS 

J. LEHNER 

ABSTRACT. Define the Hecke group by 

I 
Aq ) , -IO O )) 

Aq = 2cos7r/q, q = 3, 4, ... We call Gq(Oo) the Gq-rationals, and R - 
Gq(oc) the Gq-irrationals. The problem we treat here is the approximation 
of Gq-irrationals by Gq-rationals. Let M(a) be the upper bound of numbers 

c for which la - k/ml < 1/cm2 for all Gq -irrationals and infinitely many 
q klm E Gq(O Set h' = infc M(ae) . We call h' the Hurwitz constant for 

Gq* Itisknownthat h =2, q even; h'=2(1+(1I-Aq/2)2)112, q odd. In 
this paper we prove this result by using Aq-continued fractions, as developed 
previously by D. Rosen. Write 

Pn - I ( 
n- 

l) 112 
.. 

**en a - 2 
Qn-l mn-l (a)Qn _ 

where e1 = ?1 and Pl Qi are the convergents of the Aq-continued fraction 
for a . Then M(a) = limn mn (a) . We call mn (a) the local Hurwitz constant. 
In the final section we prove some results on the local Hurwitz constant. For 
example (Theorem 4), it is shown that if q is odd and En+i = En+2 = +1 , then 

mi > ( 2 + 4)1/2 > h' for at least one of i = n - 1, n, n+ 1. 

1. INTRODUCTION 

Let the Hecke group 

Gq=((0 1)' ()1 0 ) 
' 

cq q>3 

act on the upper half-plane Im z > 0 by Mobius transformations z 
(kz + l)/(mz + n), (k 1) E Gq. Gq is a horocyclic group with cusp set 
Gq (cc), which are called Gq-rationals. The points of R - Gq(oo) are the Gq- 
irrationals. In [4] we considered the problem of approximating a Gq-irrational 
by Gq-rationals. 

When q = 3, Gq becomes the classical modular group PSL(2, Z) and we 
are considering classical Diophantine approximation of rationals by irrationals. 
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A. Hurwitz showed that when a is irrational, there exist infinitely many reduced 
fractions k/m for which 

k 1 
am < /m2 

where s/3 is the best constant possible. From now on we consider only q > 4. 
Let a be Gq-irrational and suppose 

(1.1) ra- k < k E Gq(oo), m>O. 

We denote by M(a) the upper bound of numbers c for which (1.1) holds for 
infinitely many k/m and put 

(1.2) h' = infM(a), a Gq-irrational. q aq 

We call h' the Hurwitz constant for Gq In [4] we proved that h' = 2 when q ~~~~~~~~~~~~~~~~~~~q 
q is even and gave bounds for h' when q is odd. In [3] A. Haas and C. Series 
found the exact value of h'. So we now know that h' = hq, where hq is q q qq 
defined by 

(1.3) h {2, q even, > 45 
q 2(1 + (1 iAq/2) 2)1/2 5 q odd. 

(Note that the notation of [3] differs from ours-their hq is the reciprocal of 
ours-and the methods of the two papers are quite different.) 

From now on we write G for Gq, and A for Aq . In [4] we made use of a type 
of continued fraction expansion of the limit set of Gq, i.e., of XR, developed 
by D. Rosen [5]. (This limit set was also studied by Thea Pignataro in her 
Princeton thesis (1984, unpublished).) This expansion is called a (reduced) 
A-fraction and represents every real number a uniquely: 

(1.4) a =0 = r + + r0A ' el ] 

Here ei = ?1, ro = ro(a0) is an integer, ri = ri(a0) , i > 1 , are positive inte- 
gers, and certain conditions are placed on the ei and ri . The above expansion, 
referred to as ACF a0, is finite if and only if a0 is G-rational. Denote the 
convergents of (1.4) by 

(1.5) -n [rO2 *-@ ... , Qo A 
5 

Our general plan of attack follows Hurwitz and was described in [4] at the 
beginning of ?3. Hurwitz first shows that if (1.1) is satisfied by any rational 
number P/Q in lowest terms, then P/Q must be a convergent in the expansion 
of a as a regular continued fraction. The problem is thus reduced to studying 
the approximation of a by its convergents. 

Here we follow a similar plan. By a preliminary theorem [4, Theorem 3] 
the approximation of a G-irrational a0 by G-rationals was reduced to the 
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approximation of a0 by the convergents Pn/Qn of ACF a0 . Thus the inequality 
(1.1 ) was replaced by an inequality derived from 

(1.6) ao - 
1 ,MQ2 

i Mnn1 = mn- I(ao) 

and the object of study was mn-l(ao). Clearly, 

(1.7) M(a) = "lim mn-I (ad) hq = infM(ao). n-*oo a0 

We call mn(ao) a local Hurwitz constant. 
Two ACF a and /3 are said to be equivalent, and we write a - ,B, if their 

expansions agree from a certain point on. It is easy to check that a - /3 if and 
only if a =V/3 for a V E G. It is clear that 

(1.8) a> - fl =: M(a) = M(l). 

The object of the present paper is to provide inequalities for the local Hurwitz 
constants. First, however, we shall prove that the Hurwitz constant h' has the q 
value hq in (1.3), using the method of A-fractions. The result follows from 

Theorem 1. Let ao be a G-irrational given by (1.4). When q is odd, 

M(ao) > 2( 1 + (I1 - i/2)2) 
1/2 

with equality if and only if 

(X0 - I - A/2 + (I + (I - ,A/2) )l/ 

When q is even, M(ao) > 2, with equality if and only if ao 1-. 

Of course, knowledge of the value of hq, q odd, given in [3], was of the 
greatest value in constructing the proof. 

The local Hurwitz constants are also discussed. Let mn-1 = Mn1 (a) be 
defined by (1.6). 

Theorem 2. If en+1 =I , then mnni >2, mn <2, or mnn1 <2, mn>2. 

Theorem 3. Let q be odd. If rn > 2 and 'en- I= 1, then mn1 > hq. 

Theorem 4. Let q be odd. If en+1 = 8n+2 = 1, then mi > (A2 + 4)1/2 > hq for 
at least one of i = n - 1, n, n+ 1. 

2. DEFINITIONS AND BASIC LEMMAS 

In this section we gather together definitions and theorems needed in the 
sequel; most of these can be found in [5 and 4]. Let q > 4. With the notations 
of (1.4), (1.5) we have 

(2.1) Pn = rn"-Q1 + nPn-2 n > 1, 
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where 

(2.2) P_1 = 1, PO = rO, Q_1 = O, Q0= 1, 

PnQn-P Q Pn- Qn (I) 81 2 ,..9 n > 1 

(2.3) a n- = () n-l lejen 

Here, 

(2.4) m =1(a)-mni = n + ct/a1, n > 3, 

(2.5) [ rn~~~n n] n > 0; 

(2.5)n1 

aI- 
I9~l l 2l 

(n-I= [n-I rn-2A li 

As we shall see later, Qn > 1 and mn1 (a) > 0. Note that Pn/Qn is a strictly 
decreasing sequence when all ei = -1. The periodic ACF of period p, 

(> rA ri rp-,A rOA rA ] 

can be written as 

a [rOA5 rl.' ' 9P2' ~. 

or as 

The following lemma is slightly more general than [5, p. 556]. 

Lemma 1. Let 
a nv = [bn en+l/b n+1 ,* lb] 

and 
am, = [blu-1 ' b -1' '] 

have by, b' > 0, 0 < n < < v. If b > b', then an_ > acn and am, > a 

if some bl > b'If 
a= [bn en+ 1Ib+1 1] 

and 
atn =[bn I- Ib~n+I11* 

are convergent fractions, and b? > bH, ,u > n, then an > an. 

For q odd, write q = 21- 1 I > 3; for q even, write q =21, 1 > 2. Let 

(2.5a) s = [(q - 3)/2] = I - 2, 1 > 2. 
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The notation (-1 /rA)n means a block of n consecutive terms -1/rAL We 
shall frequently need the ACF 

B(n)-= [A, (_/I IA)n- 
I 

n > 2, B(1) Al 

with n partial quotients. Thus [5, p. 556], 

B(n +1) = A- l/B(n), I 1 < n < s+ 1, 

(2.6) B(n) is strictly decreasing, 
(2.6) ~B(s) = II(A - 1), B(s + 1) =1, q odd, 

B(s) = AI(A 2 - 2), B(s + 1) 2/A, q even. 

Also let 
C(n) =[2A, (- 1/2A) n- I I n > 2, C(1) -2A. 

Then 
C(n +1) = 2A - l/C(n), n > I 

(2.7) C(n) is strictly decreasing, 

lim C(n) = A + (A8 1)1/ n -oo 

We have 

(2.8) C(n+ 1), T] > [C(n) T n > 1, 0 < T <,A + (At2 1)1/2 

Indeed, by Lemma 1, 

[C(n + 1)-j = [C(n) T] > C(n), 

since T + 1/T < A + (A2 _ 1)1/2 + A _ (,2 _ 1)1/2 - 2AZ. Similarly, 

(2.9) [B(k), -1/T] > [B(k + 1), -1/T], k<s, T>O. 

In fact, 

[B(k),-T > [B(k),A 1] 

= B(k)-, '-T=[B(k + 1),T' 

since T+1/T>2>A. 
When ACF a is reduced (see ??3 and 5 for the definition), we have 

(2.10) anv > 2/i, v > n; an > 2/? if ro > 1 [5, Lemma 2], 

where 

a = ri Al n+ ..1 v >n; a =rA nv [n rn+i ri] An=Ann n 

(2.11) [ Cn+i] 

Qn > Qn-1 n > 1 [5, Theorem 3]. 
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Using these inequalities in (2.4) and (2.1), we get 

2 
m l (a) -1 > O. n > 3; Q 1, n?O, 

as stated earlier. 

3. EVALUATION OF THE HURWITZ CONSTANT 

In this section our object is to prove Theorem 1. The result for even q having 
been established in [4, Theorem 1], we now assume q odd. 

A ACF a0 = [roA, -el/rA, ...1 is said to be reduced [5, p. 555] if 

The inequality riA+gi+ < 1 (i.e., ri = 1 , ei+I = -1 ) is satisfied 
(3.1) for no more than s consecutive values i = j, j + 1, ... , j + 

s - 1, j ? 1. Here s is defined in (2.5a). 

(3.2) 
IIf riA + gi+l < 1 is satisfied for s consecutive values i = 

(3.2 j,.. ., j +s - 1, then rj+s-> 2. 

(3.3) If [B(s), - 1 /2A, - 1 /B(s)] occurs, the succeeding e is + 1 . 

(3.4) If ACF terminates with e/B(s + 1), then e = +1. 

A reduced ACF has the following properties, in addition to (2.9) and (2.10): 

(3.5) An infinite reduced ACF converges. 

Every real number a can be expanded uniquely by the "nearest 
(3.6) integer algorithm" in a reduced ACF. If the fraction is infinite, 

it converges to a. 

(3.7) Qn -* X, n -- xo. 

From now on, ACF shall mean reduced ACF. Bear in mind that at this 
point we are interested in lim mn -(ao) rather than mn -(a0) itself, because 
of (1.7). 

We first consider the ACF ao with all eV = -1. In a0, some terms -1/rA, 
r > 2, must occur by (3.1); in fact, there is at least one such term in every block 
of length s + 1. We shall make a series of transformations in ACF a0, each 
having the effect of decreasing a0 while leaving it reduced. The first transfor- 
mation is to replace each rV > '2 by rV = 2, which by Lemma 1 decreases am 
For convenience let ro = 2, so that now 

(3.8) a0 = [C(t1), -1/B(u,), -l/C(t2), ...], ti > 1, 1 < ui <5, 

by (3.1). By (2.8) we can assume further that t = 1 or 2. 
The case q = 5 is simpler to treat than the higher values of q. Let A = A5 

then s = 1, so ui = 1. Moreover, ti > 2 for all i > 2, otherwise (3.3) is 
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violated. Thus, we decrease a0 by assuming t1 = 2, and we shall temporarily 
assume t,= 1 . Hence, 

(3.9) aom? [2A -- T = T1 l 

a periodic ACF of period 3. If any tj is greater than 2, we have strict inequality. 
The reverse aC 1 can be extended to a periodic fraction with a decrease in 

value. This fraction, still denoted by obviously satisfies 

(>3n- I> [2A5 -i 5 (2A) 
5 ... To 

Therefore, 

m3n-1 > T - l/to. 

By similar calculations we can show that 

m3n-2 >2 ,/ T + -2A= To-- 
3n+ 1 0 0 

where we used T31 = T3n+1 = - /T = TO- 2A. Thus, m3"_ and m3-2 
are both bounded below by T0 - l/zo. On the other hand, 

(3.10) m3n T3n -Il /n < T3n+ -z1 = -***<A. 

It remains to evaluate To - lITo . Now, To = 2A - 1I /T1 , and it was shown in 
[4, p. 126] that Tz satisfies 

T1 1Ado + 5 
where we used A2 _ A - 1 = 0. From this we calculate that 

(3.11) T2+(2-3A)To+ 1 =0, 

or 

(3.12) To 1 -A/2 + (1 + (1 -A/2) 

Let To be the other root, Tzrz= 1 . Then, 

3n- 1m3n2 > 0 T = Tz- z = (9A2 -12) / 

(3.13) = ~~~~(9 - 3A) 1/2 = 2 (1+ (1 A 2 h5 

From (3.10), (3.12), and (3.13) it follows that M(TO) = h5 when T0 satisfies 
(3.12), and this is the only case of equality. Theorem 1 is now proved for q = 5. 
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We next assume q > 7. The case ti = 2 for some i in (3.8) is not difficult. 
Suppose B(u,), -1/2A, -1/2A, -1/B(u2) occurs. Setting [2A, -1/B(u2), ... ] 
= [r A, ...], we have a > 2A - A/2 = 3A/2 by (2.10). Also, a'- = 

[2A -1 /B(u1), .. .1 > 3A/2, since a/1 is reduced. Hence, 

(3.14) mnI? > 3A/2 - 2/3A > hq + 0.3, q > 7, 

as a calculation shows. It follows that 

(3.15) M(ao) > hq + 0.3, q > 7, 

for a0 in this class. 
We may now assume all ti = 1. Define two periodic ACF of period p = 

2s + 1: 

(3.16) fio = [2A, -1/B(s), -1/2A, -1/B(s - 1 ),f 0] = flp, 

(3.17) yo = [2A, -I /B(s - 1 ), - 1/2A, -I /B(s), -I lyo] yp 

Note that yo = 
ls+ 

o 1 SO that ,6o - Yo 
Let 

AO~~i+O' (5? [ ' B(s)' 2A B(s -1) flo. 

and let PiJQj, i > 0, be the convergents of Jo P1 and Qi satisfy the recur- 
rence (2.1), and we calculate certain convergents explicitly. Recall q = 21 - 1. 
When 2 < j < s, the recurrence (2.1) has constant coefficients and we solve for 

Qj = Aj + BC j, where 7 = 2-r(A + (A2 - 4)1/2) = i/q 

Hence, 
Qo=A+B= 1, Q1 =AC+BC1 =B , 

yielding 

(3.18) ~ -1 C+I -j-1I 
(3.18) (C- - )Qj = -(:~ + C-- -2i Si 7(j +1)1q 

In particular, put j = s - 2 = 1 - 4: 

(C - C)Qs-2 = -2i sin 1 
- 
31- -2icos 5 7r 

2 -1 
~ 1 

i2q2 - 
Le j=e rlq oeC=w ,O2 w0+w I=2 cos 7r/2q, w 2+w0 =,~ AL (0+W 

= 

A2 _ 2. Hence, 
05 -5 (O -1) 4 2 -2 -4 

(3.19) 2cos57l/q=w +wO =(w+ )(c -c + I - wO + cs) 

= (w)+ &1)(,7 -A - 1). 

Also, C- = -2i sin 7r/q. Therefore, 

(3.20) Q = (A2 -_A_ 1)Q, 



HURWITZ CONSTANT AND DIOPHANTINE APPROXIMATION 773 

with the abbreviation 

W + W)1 1 
2 sinnj/q 2 sin7r/2q 

This illustrates the calculation. Similarly we find 

(3.21) Qs I = (Ai- 1)Q, 

and by applying the recurrence (2.1) we derive further 

(3.22) QS = fln Qs+l = (Ai+ OfQ Qs+2 = (A 2+A - 142Q (3.22) (3 + 2 
Qs+3 = (R+R- 2A - I)Q. 

Next we consider Qj for s + 2 < i < 2s. Write Q' = so now 
0 < j < s - 2. Q' satisfies the same recurrence as Qj with initial values 

QO= Qs+21 Q' = Qs+3* Solving, we find 

(3.23) (C1 - o)Q = -Q+3 -4-) + Qs+2(C' _ 4 1) 

0 < j < s - 2. For example, set j= s - 2 = - 4. Then, Cs-2 _ C-s+2 = 

2icos77n/2q and C s- - _ = 2icos97i/2q. The values of the cosines are 

calculated as in (3.19). Using 1 - = -2i sinnj /q and the values (3.22), we 
get 

Q2s =Qs- I 

= 2 Sn /q) 
+ 

(A + A22 2A - 1 )(A3 _ A2 - 2A + 1) 

(3.24) -_2si q (,2 (+ _ 1)( _A _ 32 + 2A + 1)} 

-,( + l) 2I) 
2 

(A + 2)A - 

4sin2 7/q 4_2 

In this same way one can derive Q2s_ = (A 2 _ 2)/(2 - A). 
To calculate pJi, we note that 

Pi= Qi+, O5 ~ s1 

Ps Ps+3 are calculated by the recurrence (2.1). We now use the analogues 
of (3.23), (3.24) to get P2s P2s-1 

In summary, we now have 

QS-2 (A2 _A_ )Q Qs_ =(A _ )Q Qs Q5 

( 5 1'2- = , Ps = Q, where Q = 1/(2 sin(7r/2q)); 
(3.25) 3- 

Q- 
2s 2 

2 

P2s- I= (A3- 22+ A)), P2S = (2 - 2A + 2)(o 

Q^,=(A2 - 2)a), 5 =Ac) where ct) = 1/(2 - A). 
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This gives 

_ a 2s+ 2 floQ2s - Q2s-I 

(3.26) fl-2 _ (3r - 2)/Bo + 2A2 -2A- 1 =0, 

fB = 

- 
1+ I + 

-1- )2) 1/; 
we take the plus sign for the square root, since Igo > 2/i > 1 from (3.9). 

The evaluation of yo is similar: 

I- fi0 -(A - 1) 
(3.27) Y2 - A B(s), 

At this point, it is convenient to introduce 

(3.28) *I p + 2 

so that pp* = -1 . Then, 
go = -P* 

Substituting in (3.27), 

p*(A _ 1) - I 

The reverse 1 can be extended to a periodic ACF of period p with a 
decrease in value. We denote this fraction by fi>1 also. Hence 

(3.29) fi3 1 = B(S-1)-2, B(s)' 22 B(s 1)] 

_ 1 
'tp-1 I 2A - fli 

These values enable us to calculate (see (2.4)) 
1 _ 

m I (fio) = fitp - _, - 0o (2A - yo) 

(3.30) =,Vp* p 

=2 + ( 2) ) =hq' 

(3.31) MtpI(yo) = yo - (2A - fl) = hq* 

On the other hand, if v $ 0 (modp), mv- I (fo) < fiv = A - < A < hq. So, 
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that is, 

(3.32) M(/30) = M(yo) = h. 

Next, we wish to show that I&0 and yo are unique up to G-equivalence. 
Recall that q > 7, so s > 2. Define 

(3.33) * [2A - I T= [2A - I ] 

(3~~~~ 34 o=[2B(s) 'T]' T=[, B(k 1) ' 

We shall show that every a0 $, flo can be replaced by fi* or YO with a decrease 
in M(ao). 

Consider yo . Since it is reduced, we have I? < s, 1j + 1j+l < 2s - 1,1? 1, 
by conditions (3.1) and (3.5). Replace 1 < s - I by 1 = s - 1; this decreases 
y* . We say the sequence {/ I} is alternating if the entries s - 1 and s occur 
in succession. Clearly, if ACF y* ends in an infinite alternating sequence, then 

*~~~~~~~~~~ 
Yo 

- Yo 
Suppose, on the contrary, that for some odd t the sequence '1= s, 12, ... . 

it+ = s- I is alternating, but (lt+2, 1t+3' * I *t+k+3) = (s, s- i, * , s- 1, s) 
There are k entries s - 1 . If k is odd, we can replace every other s - 1 
by s to obtain an alternating sequence. Suppose k is even, k = 4, say. Then 

(It+3, ... , 1t+6) can be replaced by (s - 1, s, s - I, s - I) . Thus, the sequence we 
must treat is (s, s - I, s - I, s), and we wish to replace it by (s, s - I, s, s - 1). 
This applies to any even k. 

What we must prove is that 

(*) [B~s- 1), -2A B(s) U. B(s - I) U. 

where U = [2A, -I/B(11), -I/V] = A + [, ...] > + 2/ > Ai+ 1, U < 2Z. 
By writing the left member as [R, -1 /B(s - 2), ...], and similarly for the right 
member, and repeating the process, we eventually bring (*) to the form 

(**) [ 'B(s) 'U] >[ 2 B(s - ) U 

Since U>A+i, 

[B(s) ] [B(s), + i] > 

from which it follows that the left member of (**) is positive. But 

[2A , - /B(s - 1) , - I/U] > A + [B(s) , -I/U] > O, 

so the right member of (**) is negative. This establishes (*). We have shown 
that y* > yo. Similarly, fl* > flox 
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If n is an index for which yn = [2A, -1 /B(s - 1), ...], then by the previous 
reasoning 

?n > Yo A + P> go = A /3 i P*. 
Now, 

(Yn-1) ( k 2A B(lkl) - 

> [B(s), ~-' B(s - 1) W 

where W = [2 -1/B(lk2), ...], with a finite alternating sequence 'k-2 

k-3 ..., 11 This can be extended to an infinite alternating sequence with a 
decrease in the value of W. Hence, 

(Y2i) > 3i = > 

It follows that 

Mn = 
* 

-* 1 Y y- (2A -f) 
(3.35) 

n n (y* ), > 0 

> yo+f0o-2A=hq; 

see (3.30). Similarly, 

(3.36) mn-I(fl) >hqh 

On the other hand, if rn = 1, we have mnI(fin) < A- < hq. We have 
proved 

(3.37) M(/J*) = lim m'(/J) > M(/3o) = hq M(y) > hq, 

equality occurring if and only if w6o, y f . 
Putting (3.13), (3.15), (3.35), and (3.36) together, we get 

Lemma 2. If ao has all eV, =-1 and rn = 2, then 

(3.38) Mn- I ('ao) > hq' 

Hence, 

M(ao)>hqq q>5, 

with equality if and only if ao P . 

The last statement follows since rn = 2 must occur infinitely often. 
To complete the proof of Theorem 1, we proceed as follows. If e = 1 occurs 

in a0 only a finite number of times, we may assume it never occurs; then by 
(3.2), r,. > 2 infinitely often. Hence M(ao) > hq by Lemma 2, with the 
cases of equality mentioned there. So we now assume e = 1 occurs infinitely 
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often but not always. We look for the largest block of terms with e = -1, i.e., 
bounded by e = + 1 at both ends. Denote this block by 

a = rA,- ,*, ] es= + =1 

The terms with rt =1 yield only mtnl < A < hq, Iu + 1 < t < V. So 
let rn =2 for an n with i + 1 < n < v . If aev does not end in B(s), 
-1/2A, -1/B(s), we can adjoin U with all e = -1 so that [aV, -1/U] is 
reduced: for example, we could take a periodic U = [2A, -1/2A, ...]. Then by 
(2.2), an > anv > [lanv -1/U] * Similarly, a 1 > an-L > [anipa 

/ 
-1/V], 

where V = [r'2A, -1/r_2A, ... ., -1 /r'A] is chosen so that [a'1, -1 /V] 

is reduced. Then, 0 := [V', -1l v -1/ U] has all e = -1 and is reduced. 
By Lemma 2, 

(3.39) mn- I(a0) > mn-1(30) ? hq rn > 2. 

It follows that 

(3.40) M(ao) > M(G0) > hq. 

When a',V ends with B(s), -1/2A, -1 /B(s), there is no U satisfying the 
required conditions because of (3.3). We derive successively, using the values 
(3.25): 

ao =[.*,-1/B(s), 1/T], 

[B(s), y T]=T +Q- > A - I 

[ >[s .]B(s) T2 

2. 
[( )'- 2A' Bs)' T] 

> 
()' A+1 A' 

[2A, -B~~~~s) '~ ... ' T > [2A,2 2' 

and finally 

?t ln = 2 B(11) ' B(1k) '3A/2] 

We assign ii = s or s- 1 in alternation, so that / is of the form fio in (3.34) 
or y2 in (3.33); then from (3.37), (3.36) we again get (3.39), (3.40). 

The final case is: all e = +1. If 1/rnA occurs with rn > 2, then mn-1 > 
an > 2A > hq. When I/rrnA occurs infinitely often, we get 

M(a) = lim mn-I (a) > 2A > hq. 
n-Ooo 

Otherwise, we may assume 1 /rA , r > 2, never occurs and 
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So, 

(3.41) mnl =u+ =(A2 + 4)12> hq 

as a small calculation shows, and this implies 

M(ao) > hqa 
In all cases, then, M(o!0) is bounded below by hq, with the cases of equality 
stated in (3.12), (3.37), (3.38). This completes the proof of Theorem 1. 

4. THE LOCAL HURWITZ CONSTANT 

In this section we shall consider the local Hurwitz constant, i.e., mi(ao). Our 
object is to compare mi with hq. 

We first use a geometric method. Let a be G-irrational. The Ford circle Cn 
is defined by 

where Pn/Qn are the convergents of a. Different Cn do not overlap; Cn and 
Cm are tangent externally if and only if m = n + 1 or n - 1 . These assertions 
follow easily from the determinant condition (2.2). Also from (2.3), (2.12), 
with a = [roA, el/r,...], we have 

sgn (a ~n1 ?sgn a n) 
( Qn- I ( Qn) 

according as en+1 = -1 or +1 . 
Suppose en+1 = -1. Then a is on the same side of both Pn/Qn and 

Pn- Qn- 1* It follows that 

(4.1) a-PI 1 fori= n -Ior n. 

Equality is impossible because PiJQi is G-rational, but a is G-irrational. 
Next suppose en+l = 1 . Then a lies between Pn/Qn and Pnl1/Qn-l . Let 

(i, j) be a permutation of (n - 1, n) . Then, 

P. 1 P. 1 
(4.2) ae- I < Q2 ' J > 2J 

Qi 2Q a-Q- 2Qj 
Equality can occur only if a coincides with the real projection of the point 
of tangency of the Ford circles, which is impossible because a is G-irrational. 
Hence, 

Theorem 2. If en+l = 1, we have mn-l > 2, mn < 2, or mn-l < 2, mn > 2. 

An elegant algebraic proof of this theorem in the rational case (q = 3) was 
given by K. Th. Vahlen [6]. 

Theorem 2 holds for all q > 4, even or odd. Since hq = 2 when q is even, 
it provides an estimate of the desired type for even q. We now concentrate on 
odd q. 
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Theorem 3. Let q be odd. If rn > 2 and en-1 = 1, then mni1 > hq. 

Theorem 3 is a special case of (3.39). 
If we drop the assumption rn > 2, we can have two consecutive mi < hq, 

as we see from the following example: let 

(43) A= A7=1.80,...,rn1 -4, 

* (t~~~o = [I ** -1/4A, 1/A, -1/A, -1/A, . .. ], 
for which mn < A, Mnn1 < 1.97 < 2. We make further assumptions on the 
6i I 

Theorem 4. Let q be odd. If en+l = 8n+2 = 1, then mi > (A2 + 4)1/2 > h, for 
at least one of i = n - 1, n, n + 1. 

The proof is modelled after one by M. Fujiwara [2]; see also F. Bagemihl and 
J. R. McLaughlin [1]. In contradiction to the conclusion 

(4.4) mi(ca) > (A2 +4) 1/2 

we can assert that 
P.1 

(4.5) a- J > 2 /22 n-1<j<n+1. 

We observe from (2.3) that a -Pn -/Qn - and ac-Pn/Qn have opposite signs, 
in view of en+1 = 1 . Hence, 

(A2 + 4)1/2 (Q2 + ) Qn- + Qn Qn= 

Write 
(A2 + 4)1/2 = 1 + U>A; 

U 
then 

Q_2 2 Qfl2 +1 Qnl1)Ql1 )o 
Qn (A n 4 l Qn + I = I Qn U <) 0 

Now Qn/Qn- - /u > 1-1 = O, so Qn/Qn1 - u < 0, that is, 

(4.6) Qn < U. 

Hence, 

(4.7) Qn_ 1 >1 
Rn 1 

Replacing n by n + I in (4.6)-recall en+2 = 1-we get 
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Therefore, 

a > Qn+ I n +n+ > A + - Qn 

yielding 
Qn- I < u- A. 

Qn 
But 

( - i) U + i)-4=A, 

and so 
Qn-1 1 
Qn u' 

contradicting (4.7). This completes the proof of Theorem 4. 

Note added in proof. In a recent letter Thomas A. Schmidt has pointed out an 
error in [4] that carries over to the present paper. It can be corrected as follows. 
Replace the two paragraphs following (1.5) by the following: 

We now consider the approximation of a G-irrational ao by the conver- 
gents Pn/Qn of its ACF (1.4). Note that in (1.1) the fraction k/M E G(oo) 
determines k and m uniquely up to sign, since 

(m ) ml ) (O ) 1; 
when k/rm = k1/m1 . Thus we write 

(1.6) a0 - 
=- 2 Mn-1 = Mn-I (ao0), Q~~1 rn-1Qn-1 

and study mn1l(ao). Clearly, 

(1.7) M(a0) = lim Mnh(=), inf M(a). 
n-o nlao, q a 0 

0 

We call mn (a0) a local Hurwitz constant. 
Similar changes are required in [4]. In particular, Theorem 3 should be 

eliminated. 

BIBLIOGRAPHY 

1. F. Bagemihl and J. R. McLaughlin, Generalization of some classical theorems concerning 
triples of consecutive convergents to simple continued fractions, J. Reine Angew. Math. 221 
(1966), 146-149. 

2. M. Fujiwara, Bemnerkung zur Theorie der Approximation der irrationalen Zahlen durch ra- 
tionale Zahlen, T6hoku Math. J. 14 (1918), 109-115. 

3. A. Haas and C. Series, The Hurwitz constant and Diophantine approximation on Hecke 
groups, J. London Math. Soc. 34 (1986), 219-234. 

4. J. Lehner, Diophantine approximation on Hecke groups, Glasgow Math. J. 27 (1985), 117- 
127. 



HURWITZ CONSTANT AND DIOPHANTINE APPROXIMATION 781 

5. D. Rosen, A class ofcontinuedfractions associated with certain properly discontinuous groups, 
Duke Math. J. 21 (1954), 549-564. 

6. K. Th. Vahlen, Ueber Ndherungswerthe und Kettenbruche, J. Reine Angew. Math. 115 
(1895), 22 1-233. 

314 N. SHARON WAY, JAMESBURG, NEW JERSEY 08831 


