THE LOCAL HURWITZ CONSTANT AND DIOPHANTINE APPROXIMATION ON HECKE GROUPS

J. LEHNER

Abstract. Define the Hecke group by

$$
G_{q}=\left\langle\left(\begin{array}{cc}
1 & \lambda_{q} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\rangle
$$

$\lambda_{q}=2 \cos \pi / q, q=3,4, \ldots$. We call $G_{q}(\infty)$ the G_{q}-rationals, and $\mathbb{R}-$ $G_{q}(\infty)$ the G_{q}-irrationals. The problem we treat here is the approximation of G_{q}-irrationals by G_{q}-rationals. Let $M(\alpha)$ be the upper bound of numbers c for which $|\alpha-k / m|<1 / \mathrm{cm}^{2}$ for all G_{q}-irrationals and infinitely many $k / m \in G_{q}(\infty)$. Set $h_{q}^{\prime}=\inf _{\alpha} M(\alpha)$. We call h_{q}^{\prime} the Hurwitz constant for G_{q}. It is known that $h_{q}^{\prime}=2, q$ even; $h_{q}^{\prime}=2\left(1+\left(1-\lambda_{q} / 2\right)^{2}\right)^{1 / 2}, q$ odd. In this paper we prove this result by using λ_{q}-continued fractions, as developed previously by D. Rosen. Write

$$
\alpha-\frac{P_{n-1}}{Q_{n-1}}=\frac{(-1)^{n-1} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}}{m_{n-1}(\alpha) Q_{n-1}^{2}}
$$

where $\varepsilon_{l}= \pm 1$ and P_{t} / Q_{i} are the convergents of the λ_{q}-continued fraction for α. Then $M(\alpha)=\varlimsup_{\lim }^{n} m_{n}(\alpha)$. We call $m_{n}(\alpha)$ the local Hurwitz constant. In the final section we prove some results on the local Hurwitz constant. For example (Theorem 4), it is shown that if q is odd and $\varepsilon_{n+1}=\varepsilon_{n+2}=+1$, then $m_{i} \geq\left(\lambda_{q}^{2}+4\right)^{1 / 2}>h_{q}^{\prime}$ for at least one of $i=n-1, n, n+1$.

1. Introduction

Let the Hecke group

$$
G_{q}=\left\langle\left(\begin{array}{cc}
1 & \lambda_{q} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\rangle, \quad \lambda_{q}=2 \cos \frac{\pi}{q}, q \geq 3
$$

act on the upper half-plane $\operatorname{Im} z>0$ by Möbius transformations $z \rightarrow$ $(k z+l) /(m z+n),\left(\begin{array}{ll}k & l \\ m & n\end{array}\right) \in G_{q} . G_{q}$ is a horocyclic group with cusp set $G_{q}(\infty)$, which are called G_{q}-rationals. The points of $\mathbb{R}-G_{q}(\infty)$ are the G_{q} irrationals. In [4] we considered the problem of approximating a G_{q}-irrational by G_{q}-rationals.

When $q=3, G_{q}$ becomes the classical modular group $\operatorname{PSL}(2, \mathbb{Z})$ and we are considering classical Diophantine approximation of rationals by irrationals.

[^0]A. Hurwitz showed that when α is irrational, there exist infinitely many reduced fractions k / m for which
$$
\left|\alpha-\frac{k}{m}\right|<\frac{1}{\sqrt{5} m^{2}}
$$
where $\sqrt{5}$ is the best constant possible. From now on we consider only $q \geq 4$.
Let α be G_{q}-irrational and suppose
\[

$$
\begin{equation*}
\left|\alpha-\frac{k}{m}\right|<\frac{1}{c m^{2}}, \quad \frac{k}{m} \in G_{q}(\infty), m>0 \tag{1.1}
\end{equation*}
$$

\]

We denote by $M(\alpha)$ the upper bound of numbers c for which (1.1) holds for infinitely many k / m and put

$$
\begin{equation*}
h_{q}^{\prime}=\inf _{\alpha} M(\alpha), \quad \alpha G_{q} \text {-irrational. } \tag{1.2}
\end{equation*}
$$

We call h_{q}^{\prime} the Hurwitz constant for G_{q}. In [4] we proved that $h_{q}^{\prime}=2$ when q is even and gave bounds for h_{q}^{\prime} when q is odd. In [3] A. Haas and C. Series found the exact value of h_{q}^{\prime}. So we now know that $h_{q}^{\prime}=h_{q}$, where h_{q} is defined by

$$
h_{q}=\left\{\begin{array}{l}
2, \quad q \text { even }, \geq 4, \tag{1.3}\\
2\left(1+\left(1-\lambda_{q} / 2\right)^{2}\right)^{1 / 2},
\end{array} \quad q\right. \text { odd }
$$

(Note that the notation of [3] differs from ours-their h_{q} is the reciprocal of ours-and the methods of the two papers are quite different.)

From now on we write G for G_{q}, and λ for λ_{q}. In [4] we made use of a type of continued fraction expansion of the limit set of G_{q}, i.e., of \mathbb{R}, developed by D. Rosen [5]. (This limit set was also studied by Thea Pignataro in her Princeton thesis (1984, unpublished).) This expansion is called a (reduced) λ-fraction and represents every real number α uniquely:

$$
\begin{equation*}
\alpha \equiv \alpha_{0}=r_{0} \lambda+\frac{\varepsilon_{1}}{r_{1} \lambda+\cdots}=\left[r_{0} \lambda, \frac{\varepsilon_{1}}{r_{1} \lambda}, \ldots\right] \tag{1.4}
\end{equation*}
$$

Here $\varepsilon_{i}= \pm 1, r_{0}=r_{0}\left(\alpha_{0}\right)$ is an integer, $r_{i}=r_{i}\left(\alpha_{0}\right), i \geq 1$, are positive integers, and certain conditions are placed on the ε_{i} and r_{i}. The above expansion, referred to as $\lambda \mathrm{CF} \alpha_{0}$, is finite if and only if α_{0} is G-rational. Denote the convergents of (1.4) by

$$
\begin{equation*}
\frac{P_{n}}{Q_{n}}=\left[r_{0} \lambda, \ldots, \frac{\varepsilon_{n}}{r_{n} \lambda}\right], \quad Q_{0}=1 \tag{1.5}
\end{equation*}
$$

Our general plan of attack follows Hurwitz and was described in [4] at the beginning of $\S 3$. Hurwitz first shows that if (1.1) is satisfied by any rational number P / Q in lowest terms, then P / Q must be a convergent in the expansion of α as a regular continued fraction. The problem is thus reduced to studying the approximation of α by its convergents.

Here we follow a similar plan. By a preliminary theorem [4, Theorem 3] the approximation of a G-irrational α_{0} by G-rationals was reduced to the
approximation of α_{0} by the convergents P_{n} / Q_{n} of $\lambda \mathrm{CF} \alpha_{0}$. Thus the inequality (1.1) was replaced by an inequality derived from

$$
\begin{equation*}
\alpha_{0}-\frac{P_{n-1}}{Q_{n-1}}=\frac{(-1)^{n-1} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}}{m_{n-1} Q_{n-1}^{2}}, \quad m_{n-1}=m_{n-1}\left(\alpha_{0}\right) \tag{1.6}
\end{equation*}
$$

and the object of study was $m_{n-1}\left(\alpha_{0}\right)$. Clearly,

$$
\begin{equation*}
M\left(\alpha_{0}\right)=\varlimsup_{n \rightarrow \infty} m_{n-1}\left(\alpha_{0}\right), \quad h_{q}=\inf _{\alpha_{0}} M\left(\alpha_{0}\right) \tag{1.7}
\end{equation*}
$$

We call $m_{n}\left(\alpha_{0}\right)$ a local Hurwitz constant.
Two $\lambda \mathrm{CF} \alpha$ and β are said to be equivalent, and we write $\alpha \sim \beta$, if their expansions agree from a certain point on. It is easy to check that $\alpha \sim \beta$ if and only if $\alpha= \pm V \beta$ for a $V \in G$. It is clear that

$$
\begin{equation*}
\alpha \sim \beta \Rightarrow M(\alpha)=M(\beta) \tag{1.8}
\end{equation*}
$$

The object of the present paper is to provide inequalities for the local Hurwitz constants. First, however, we shall prove that the Hurwitz constant h_{q}^{\prime} has the value h_{q} in (1.3), using the method of λ-fractions. The result follows from
Theorem 1. Let α_{0} be a G-irrational given by (1.4). When q is odd,

$$
M\left(\alpha_{0}\right) \geq 2\left(1+(1-\lambda / 2)^{2}\right)^{1 / 2}
$$

with equality if and only if

$$
\alpha_{0} \sim 1-\lambda / 2+\left(1+(1-\lambda / 2)^{2}\right)^{1 / 2}
$$

When q is even, $M\left(\alpha_{0}\right) \geq 2$, with equality if and only if $\alpha_{0} \sim 1$.
Of course, knowledge of the value of h_{q}, q odd, given in [3], was of the greatest value in constructing the proof.

The local Hurwitz constants are also discussed. Let $m_{n-1} \equiv m_{n-1}(\alpha)$ be defined by (1.6).

Theorem 2. If $\varepsilon_{n+1}=1$, then $m_{n-1}>2, m_{n}<2$, or $m_{n-1}<2, m_{n}>2$.
Theorem 3. Let q be odd. If $r_{n} \geq 2$ and $\varepsilon_{n-1}=1$, then $m_{n-1} \geq h_{q}$.
Theorem 4. Let q be odd. If $\varepsilon_{n+1}=\varepsilon_{n+2}=1$, then $m_{i} \geq\left(\lambda^{2}+4\right)^{1 / 2}>h_{q}$ for at least one of $i=n-1, n, n+1$.

2. Definitions and basic lemmas

In this section we gather together definitions and theorems needed in the sequel; most of these can be found in [5 and 4]. Let $q \geq 4$. With the notations of (1.4), (1.5) we have

$$
\begin{align*}
P_{n} & =r_{n} \lambda P_{n-1}+\varepsilon_{n} P_{n-2}, \quad n \geq 1, \tag{2.1}\\
Q_{n} & =r_{n} \lambda Q_{n-1}+\varepsilon_{n} Q_{n-2}, \quad n \geq
\end{align*}
$$

where

$$
\begin{align*}
& P_{-1}=1, \quad P_{0}=r_{0} \lambda, \quad Q_{-1}=0, \quad Q_{0}=1, \\
& P_{n} Q_{n-1}-P_{n-1} Q_{n}=(-1)^{n-1} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}, \quad n \geq 1, \tag{2.2}\\
& \quad \alpha-\frac{P_{n-1}}{Q_{n-1}}=(-1)^{n-1} \frac{\varepsilon_{1} \cdots \varepsilon_{n}}{m_{n-1}(\alpha) Q_{n-1}^{2}} .
\end{align*}
$$

Here,

$$
\begin{gather*}
m_{n-1}(\alpha) \equiv m_{n-1}=\alpha_{n}+\varepsilon_{n} / \alpha_{n-1}^{\prime}, \quad n \geq 3 \tag{2.4}\\
\alpha_{n}=\left[r_{n} \lambda, \frac{\varepsilon_{n+1}}{r_{n+1} \lambda}, \ldots\right], \quad n \geq 0 ; \tag{2.5}\\
\alpha_{n-1}^{\prime}=\left[r_{n-1} \lambda, \frac{\varepsilon_{n-1}}{r_{n-2} \lambda}, \ldots, \frac{\varepsilon_{2}}{r_{1} \lambda}\right] .
\end{gather*}
$$

As we shall see later, $Q_{n} \geq 1$ and $m_{n-1}(\alpha)>0$. Note that P_{n} / Q_{n} is a strictly decreasing sequence when all $\varepsilon_{i}=-1$. The periodic $\lambda \mathrm{CF}$ of period p,

$$
\alpha=\left[r_{0} \lambda, \frac{\varepsilon_{1}}{r_{1} \lambda}, \ldots, \frac{\varepsilon_{p-1}}{r_{p-1} \lambda}, \frac{\varepsilon_{p}}{r_{0} \lambda}, \frac{\varepsilon_{1}}{r_{1} \lambda}, \ldots\right]
$$

can be written as

$$
\alpha=\left[r_{0} \lambda, \overline{\frac{\varepsilon_{1}}{r_{1} \lambda}, \ldots, \frac{\varepsilon_{p-1}}{r_{p-1} \lambda}, \frac{\varepsilon_{p}}{r_{0} \lambda}}\right],
$$

or as

$$
\alpha=\left[r_{0} \lambda, \frac{\varepsilon_{1}}{r_{1} \lambda}, \ldots, \frac{\varepsilon_{p-1}}{r_{p-1} \lambda}, \frac{\varepsilon_{p}}{\alpha}\right] .
$$

The following lemma is slightly more general than [5, p. 556].
Lemma 1. Let

$$
\alpha_{n \nu}=\left[b_{n}, \varepsilon_{n+1} / b_{n+1}, \ldots, \varepsilon_{\nu} / b_{\nu}\right]
$$

and

$$
\alpha_{n \nu}^{\prime}=\left[b_{n}^{\prime},-1 / b_{n+1}^{\prime}, \ldots,-1 / b_{\nu}^{\prime}\right]
$$

have $b_{\mu}, b_{\mu}^{\prime}>0,0 \leq n \leq \mu<\nu$. If $b_{\mu} \geq b_{\mu}^{\prime}$, then $\alpha_{n \nu} \geq \alpha_{n \nu}^{\prime}$, and $\alpha_{n \nu}>\alpha_{n \nu}^{\prime}$ if some $b_{\mu}>b_{\mu}^{\prime}$. If

$$
\alpha_{n}=\left[b_{n}, \varepsilon_{n+1} / b_{n+1}, \ldots\right]
$$

and

$$
\alpha_{n}^{\prime}=\left[b_{n}^{\prime},-1 / b_{n+1}^{\prime}, \ldots\right]
$$

are convergent fractions, and $b_{\mu} \geq b_{\mu}^{\prime}, \mu \geq n$, then $\alpha_{n} \geq \alpha_{n}^{\prime}$.
For q odd, write $q=2 l-1, l \geq 3$; for q even, write $q=2 l, l \geq 2$. Let

$$
\begin{equation*}
s=[(q-3) / 2]=l-2, \quad l \geq 2 \tag{2.5a}
\end{equation*}
$$

The notation $(-1 / r \lambda)^{n}$ means a block of n consecutive terms $-1 / r \lambda$. We shall frequently need the $\lambda \mathrm{CF}$

$$
B(n)=\left[\lambda,(-1 / \lambda)^{n-1}\right], \quad n \geq 2, \quad B(1)=\lambda
$$

with n partial quotients. Thus [5, p. 556],

$$
\begin{align*}
& B(n+1)=\lambda-1 / B(n), \quad 1 \leq n \leq s+1 \\
& B(n) \text { is strictly decreasing, } \\
& B(s)=1 /(\lambda-1), \quad B(s+1)=1, \quad q \text { odd } \tag{2.6}\\
& B(s)=\lambda /\left(\lambda^{2}-2\right), \quad B(s+1)=2 / \lambda, \quad q \text { even. }
\end{align*}
$$

Also let

$$
C(n)=\left[2 \lambda,(-1 / 2 \lambda)^{n-1}\right], \quad n \geq 2, \quad C(1)=2 \lambda
$$

Then

$$
\begin{align*}
& C(n+1)=2 \lambda-1 / C(n), \quad n \geq 1, \\
& C(n) \text { is strictly decreasing }, \tag{2.7}\\
& \lim _{n \rightarrow \infty} C(n)=\lambda+\left(\lambda^{2}-1\right)^{1 / 2} .
\end{align*}
$$

We have
(2.8) $\left[C(n+1),-\frac{1}{T}\right]>\left[C(n),-\frac{1}{T}\right], \quad n \geq 1,0<T<\lambda+\left(\lambda^{2}-1\right)^{1 / 2}$.

Indeed, by Lemma 1,

$$
\left[C(n+1),-\frac{1}{T}\right]=\left[C(n),-\frac{1}{2 \lambda-1 / T}\right]>\left[C(n),-\frac{1}{T}\right]
$$

since $T+1 / T<\lambda+\left(\lambda^{2}-1\right)^{1 / 2}+\lambda-\left(\lambda^{2}-1\right)^{1 / 2}=2 \lambda$. Similarly,

$$
\begin{equation*}
[B(k),-1 / T]>[B(k+1),-1 / T], \quad k \leq s, T>0 \tag{2.9}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
{\left[B(k),-\frac{1}{T}\right] } & >\left[B(k),-\frac{1}{\lambda-1 / T}\right] \\
& =\left[B(k)-\frac{1}{\lambda},-\frac{1}{T}\right]=\left[B(k+1),-\frac{1}{T}\right]
\end{aligned}
$$

since $T+1 / T \geq 2>\lambda$.
When λ CF α is reduced (see $\S \S 3$ and 5 for the definition), we have

$$
\begin{equation*}
\alpha_{n \nu} \geq 2 / \lambda, \quad \nu \geq n ; \quad \alpha_{n} \geq 2 / \lambda \quad \text { if } r_{0} \geq 1[5, \text { Lemma 2] } \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{n \nu}=\left[r_{n} \lambda, \frac{\varepsilon_{n+1}}{r_{n+1} \lambda}, \ldots, \frac{\varepsilon_{\nu}}{r_{\nu} \lambda}\right], \quad \nu>n ; \quad \alpha_{n n}=r_{n} \lambda \\
& \alpha_{n}=\left[r_{n} \lambda, \frac{\varepsilon_{n+1}}{r_{n+1} \lambda}, \ldots\right], \tag{2.11}\\
& Q_{n} \geq Q_{n-1}, \quad n \geq 1[5, \text { Theorem 3]. }
\end{align*}
$$

Using these inequalities in (2.4) and (2.1), we get

$$
m_{n-1}(\alpha) \geq \frac{2}{\lambda}-1>0, \quad n \geq 3 ; \quad Q_{n} \geq 1, \quad n \geq 0
$$

as stated earlier.

3. Evaluation of the Hurwitz constant

In this section our object is to prove Theorem 1. The result for even q having been established in [4, Theorem 1], we now assume q odd.

A $\lambda \mathrm{CF} \alpha_{0}=\left[r_{0} \lambda, \varepsilon_{1} / r_{1} \lambda, \ldots\right]$ is said to be reduced $[5, \mathrm{p} .555]$ if
The inequality $r_{i} \lambda+\varepsilon_{i+1}<1$ (i.e., $r_{i}=1, \varepsilon_{i+1}=-1$) is satisfied
for no more than s consecutive values $i=j, j+1, \ldots, j+$ $s-1, j \geq 1$. Here s is defined in (2.5a).

If $r_{i} \lambda+\varepsilon_{i+1}<1$ is satisfied for s consecutive values $i=$ $j, \ldots, j+s-1$, then $r_{j+s} \geq 2$.

If $[B(s),-1 / 2 \lambda,-1 / B(s)]$ occurs, the succeeding ε is +1 .

A reduced $\lambda \mathrm{CF}$ has the following properties, in addition to (2.9) and (2.10):
An infinite reduced $\lambda \mathrm{CF}$ converges.
Every real number α can be expanded uniquely by the "nearest integer algorithm" in a reduced $\lambda \mathrm{CF}$. If the fraction is infinite, it converges to α.

$$
\begin{equation*}
Q_{n} \rightarrow \infty, \quad n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

From now on, $\lambda \mathrm{CF}$ shall mean reduced $\lambda \mathrm{CF}$. Bear in mind that at this point we are interested in $\overline{\lim } m_{n-1}\left(\alpha_{0}\right)$ rather than $m_{n-1}\left(\alpha_{0}\right)$ itself, because of (1.7).

We first consider the $\lambda \mathrm{CF} \alpha_{0}$ with all $\varepsilon_{\nu}=-1$. In α_{0}, some terms $-1 / r \lambda$, $r \geq 2$, must occur by (3.1); in fact, there is at least one such term in every block of length $s+1$. We shall make a series of transformations in $\lambda \mathrm{CF} \alpha_{0}$, each having the effect of decreasing α_{0} while leaving it reduced. The first transformation is to replace each $r_{\nu}>2$ by $r_{\nu}=2$, which by Lemma 1 decreases α_{0}. For convenience let $r_{0}=2$, so that now

$$
\begin{equation*}
\alpha_{0}=\left[C\left(t_{1}\right),-1 / B\left(u_{1}\right),-1 / C\left(t_{2}\right), \ldots\right], \quad t_{i} \geq 1,1 \leq u_{i} \leq s \tag{3.8}
\end{equation*}
$$

by (3.1). By (2.8) we can assume further that $t=1$ or 2 .
The case $q=5$ is simpler to treat than the higher values of q. Let $\lambda=\lambda_{5}$; then $s=1$, so $u_{i}=1$. Moreover, $t_{i} \geq 2$ for all $i \geq 2$, otherwise (3.3) is
violated. Thus, we decrease α_{0} by assuming $t_{i}=2$, and we shall temporarily assume $t_{1}=1$. Hence,

$$
\begin{equation*}
\alpha_{0} \geq\left[2 \lambda, \overline{-\frac{1}{\lambda},-\frac{1}{2 \lambda},-\frac{1}{2 \lambda}} ;-\frac{1}{\lambda}\right]=: \tau_{0}=\tau_{3 n} \tag{3.9}
\end{equation*}
$$

a periodic $\lambda \mathrm{CF}$ of period 3 . If any t_{j} is greater than 2 , we have strict inequality.
The reverse $\alpha_{3 n-1}^{\prime}$ can be extended to a periodic fraction with a decrease in value. This fraction, still denoted by $\alpha_{3 n-1}^{\prime}$, obviously satisfies

$$
\alpha_{3 n-1}^{\prime} \geq\left[2 \lambda,-\frac{1}{\lambda},\left(-\frac{1}{2 \lambda}\right)^{2}, \ldots\right]=\tau_{0}
$$

Therefore,

$$
m_{3 n-1} \geq \tau_{0}-1 / \tau_{0}
$$

By similar calculations we can show that

$$
m_{3 n-2} \geq \tau_{2}-\frac{1}{\tau_{3 n+1}^{\prime}}=2 \lambda-\frac{1}{\tau_{0}}+\tau_{0}-2 \lambda=\tau_{0}-\frac{1}{\tau_{0}}
$$

where we used $\tau_{3 n+1}^{\prime}=\tau_{3 n+1}=\tau_{1},-1 / \tau_{1}=\tau_{0}-2 \lambda$. Thus, $m_{3 n-1}$ and $m_{3 n-2}$ are both bounded below by $\tau_{0}-1 / \tau_{0}$. On the other hand,

$$
\begin{equation*}
m_{3 n}=\tau_{3 n+1}-1 / \tau_{3 n}^{\prime}<\tau_{3 n+1}-\tau_{1}=\lambda-\cdots<\lambda \tag{3.10}
\end{equation*}
$$

It remains to evaluate $\tau_{0}-1 / \tau_{0}$. Now, $\tau_{0}=2 \lambda-1 / \tau_{1}$, and it was shown in [4, p. 126] that τ_{1} satisfies

$$
\tau_{1}^{2}-\lambda \tau_{1}+\frac{2 \lambda-1}{5}=0
$$

where we used $\lambda^{2}-\lambda-1=0$. From this we calculate that

$$
\begin{equation*}
\tau_{0}^{2}+(2-3 \lambda) \tau_{0}+1=0 \tag{3.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\tau_{0} \sim 1-\lambda / 2+\left(1+(1-\lambda / 2)^{2}\right)^{1 / 2} \tag{3.12}
\end{equation*}
$$

Let τ_{0}^{*} be the other root, $\tau_{0} \tau_{0}^{*}=1$. Then,

$$
\begin{align*}
m_{3 n-1}, m_{3 n-2} & \geq \tau_{0}-\frac{1}{\tau_{0}}=\tau_{0}-\tau_{0}^{*}=\left(9 \lambda^{2}-12 \lambda\right)^{1 / 2} \\
& =(9-3 \lambda)^{1 / 2}=2\left(1+\left(1-\frac{\lambda}{2}\right)^{2}\right)^{1 / 2}=h_{5} \tag{3.13}
\end{align*}
$$

From (3.10), (3.12), and (3.13) it follows that $M\left(\tau_{0}\right)=h_{5}$ when τ_{0} satisfies (3.12), and this is the only case of equality. Theorem 1 is now proved for $q=5$.

We next assume $q \geq 7$. The case $t_{i}=2$ for some i in (3.8) is not difficult. Suppose $B\left(u_{1}\right),-1 / 2 \lambda,-1 / 2 \lambda,-1 / B\left(u_{2}\right)$ occurs. Setting [$2 \lambda,-1 / B\left(u_{2}\right), \ldots$] $=\left[r_{n} \lambda, \ldots\right]$, we have $\alpha_{n} \geq 2 \lambda-\lambda / 2=3 \lambda / 2$ by (2.10). Also, $\alpha_{n-1}^{\prime}=$ $\left[2 \lambda,-1 / B\left(u_{1}\right), \ldots\right] \geq 3 \lambda / 2$, since α_{n-1}^{\prime} is reduced. Hence,

$$
\begin{equation*}
m_{n-1} \geq 3 \lambda / 2-2 / 3 \lambda>h_{q}+0.3, \quad q \geq 7 \tag{3.14}
\end{equation*}
$$

as a calculation shows. It follows that

$$
\begin{equation*}
M\left(\alpha_{0}\right) \geq h_{q}+0.3, \quad q \geq 7 \tag{3.15}
\end{equation*}
$$

for α_{0} in this class.
We may now assume all $t_{i}=1$. Define two periodic $\lambda \mathrm{CF}$ of period $p=$ $2 s+1$:

$$
\begin{gather*}
\beta_{0}=\left[2 \lambda,-1 / B(s),-1 / 2 \lambda,-1 / B(s-1), \beta_{0}\right]=\beta_{p} \tag{3.16}\\
\gamma_{0}=\left[2 \lambda,-1 / B(s-1),-1 / 2 \lambda,-1 / B(s),-1 / \gamma_{0}\right]=\gamma_{p} \tag{3.17}
\end{gather*}
$$

Note that $\gamma_{0}=\beta_{s+1}$, so that $\beta_{0} \sim \gamma_{0}$.
Let

$$
\beta_{0}=\lambda+\delta_{0}, \quad \delta_{0}=\left[\lambda,-\frac{1}{B(s)},-\frac{1}{2 \lambda},-\frac{1}{B(s-1)},-\frac{1}{\beta_{0}}\right],
$$

and let $P_{i} / Q_{i}, i \geq 0$, be the convergents of $\delta_{0} . P_{i}$ and Q_{i} satisfy the recurrence (2.1), and we calculate certain convergents explicitly. Recall $q=2 l-1$. When $2 \leq j \leq s$, the recurrence (2.1) has constant coefficients and we solve for

$$
Q_{j}=A \zeta^{j}+B \zeta^{-j}, \quad \text { where } \zeta=2^{-1}\left(\lambda+\left(\lambda^{2}-4\right)^{1 / 2}\right)=e^{\pi i / q}
$$

Hence,

$$
Q_{0}=A+B=1, \quad Q_{1}=A \zeta+B \zeta^{-1}=\lambda
$$

yielding

$$
\begin{align*}
A=-\zeta /\left(\zeta^{-1}-\zeta\right), \quad B & =\zeta^{-1}\left(\zeta^{-1}-\zeta\right) \\
\left(\zeta^{-1}-\zeta\right) Q_{j}=-\zeta^{j+1}+\zeta^{-j-1} & =-2 i \sin \pi(j+1) / q \tag{3.18}
\end{align*}
$$

In particular, put $j=s-2=l-4$:

$$
\left(\zeta^{-1}-\zeta\right) Q_{s-2}=-2 i \sin \pi \frac{l-3}{2 l-1}=-2 i \cos \frac{5 \pi}{2 q}
$$

Let $\omega=e^{\pi i / 2 q}$; note $\zeta=\omega^{2}, \omega+\omega^{-1}=2 \cos \pi / 2 q, \omega^{2}+\omega^{-2}=\lambda, \omega^{4}+\omega^{-4}=$ $\lambda^{2}-2$. Hence,

$$
\begin{align*}
2 \cos 5 \pi / q & =\omega^{5}+\omega^{-5}=\left(\omega+\omega^{-1}\right)\left(\omega^{4}-\omega^{2}+1-\omega^{-2}+\omega^{-4}\right) \\
& =\left(\omega+\omega^{-1}\right)\left(\lambda^{2}-\lambda-1\right) \tag{3.19}
\end{align*}
$$

Also, $\zeta^{-1}-\zeta=-2 i \sin \pi / q$. Therefore,

$$
\begin{equation*}
Q_{s-2}=\left(\lambda^{2}-\lambda-1\right) \Omega \tag{3.20}
\end{equation*}
$$

with the abbreviation

$$
\Omega=\frac{\omega+\omega^{-1}}{2 \sin \pi / q}=\frac{1}{2 \sin \pi / 2 q}
$$

This illustrates the calculation. Similarly we find

$$
\begin{equation*}
Q_{s-1}=(\lambda-1) \Omega \tag{3.21}
\end{equation*}
$$

and by applying the recurrence (2.1) we derive further

$$
\begin{gather*}
Q_{s}=\Omega, \quad Q_{s+1}=(\lambda+1) \Omega, \quad Q_{s+2}=\left(\lambda^{2}+\lambda-1\right) \Omega \tag{3.22}\\
Q_{s+3}=\left(\lambda^{3}+\lambda^{2}-2 \lambda-1\right) \Omega .
\end{gather*}
$$

Next we consider Q_{j} for $s+2 \leq j \leq 2 s$. Write $Q_{j}^{\prime}=Q_{s+j+2}$, so now $0 \leq j \leq s-2 . \quad Q_{j}^{\prime}$ satisfies the same recurrence as Q_{j} with initial values $Q_{0}^{\prime}=Q_{s+2}, Q_{1}^{\prime}=Q_{s+3}$. Solving, we find

$$
\begin{equation*}
\left(\zeta^{-1}-\zeta\right) Q_{j}^{\prime}=-Q_{s+3}\left(\zeta^{j}-\zeta^{-j}\right)+Q_{s+2}\left(\zeta^{j-1}-\zeta^{-j+1}\right) \tag{3.23}
\end{equation*}
$$

$0 \leq j \leq s-2$. For example, set $j=s-2=l-4$. Then, $\zeta^{s-2}-\zeta^{-s+2}=$ $2 i \cos 7 \pi / 2 q$ and $\zeta^{s-3}-\zeta^{-s+3}=2 i \cos 9 \pi / 2 q$. The values of the cosines are calculated as in (3.19). Using $\zeta^{-1}-\zeta=-2 i \sin \pi / q$ and the values (3.22), we get

$$
\begin{align*}
Q_{2 s}= & Q_{s-1}^{\prime} \\
= & \frac{\Omega\left(\omega+\omega^{-1}\right)}{2 \sin \pi / q}\left\{\left(\lambda^{3}+\lambda^{2}-2 \lambda-1\right)\left(\lambda^{3}-\lambda^{2}-2 \lambda+1\right)\right. \\
& \left.\quad-\left(\lambda^{2}+\lambda-1\right)\left(\lambda^{4}-\lambda^{3}-3 \lambda^{2}+2 \lambda+1\right)\right\} \tag{3.24}\\
= & \frac{\left(\omega+\omega^{-1}\right)^{2}}{4 \sin ^{2} \pi / q} \lambda=\frac{(\lambda+2) \lambda}{4-\lambda^{2}}=\frac{\lambda}{2-\lambda} .
\end{align*}
$$

In this same way one can derive $Q_{2 s-1}=\left(\lambda^{2}-2\right) /(2-\lambda)$.
To calculate P_{j}, we note that

$$
P_{i}=Q_{i+1}, \quad 0 \leq i \leq s-1
$$

P_{s}, \ldots, P_{s+3} are calculated by the recurrence (2.1). We now use the analogues of (3.23), (3.24) to get $P_{2 s}, P_{2 s-1}$.

In summary, we now have

$$
\begin{align*}
& Q_{s-2}=\left(\lambda^{2}-\lambda-1\right) \Omega, \quad Q_{s-1}=(\lambda-1) \Omega, \quad Q_{s}=\Omega \\
& P_{s-2}=Q_{s-1}, \quad P_{s-1}=\Omega, \quad P_{s}=\Omega, \quad \text { where } \Omega=1 /(2 \sin (\pi / 2 q)) ; \\
& P_{2 s-1}=\left(\lambda^{3}-2 \lambda^{2}+\lambda\right) \omega, \quad P_{2 s}=\left(\lambda^{2}-2 \lambda+2\right) \omega, \tag{3.25}\\
& Q_{2 s-1}=\left(\lambda^{2}-2\right) \omega, \quad Q_{2 s}=\lambda \omega, \quad \text { where } \omega=1 /(2-\lambda) .
\end{align*}
$$

This gives

$$
\begin{align*}
& \beta_{0}-\lambda=\delta_{0}=\frac{P_{2 s+1}}{Q_{2 s+1}}=\frac{\beta_{0} P_{2 s}-P_{2 s-1}}{\beta_{0} Q_{2 s}-Q_{2 s-1}} \\
& \beta_{0}^{2}-(3 \lambda-2) \beta_{0}+2 \lambda^{2}-2 \lambda-1=0 \tag{3.26}\\
& \beta_{0}=\frac{3 \lambda}{2}-1+\left(1+\left(1-\frac{\lambda}{2}\right)^{2}\right)^{1 / 2}
\end{align*}
$$

we take the plus sign for the square root, since $\beta_{0} \geq 2 / \lambda>1$ from (3.9).
The evaluation of γ_{0} is similar:

$$
\begin{equation*}
\gamma_{0}-\lambda=\left[B(s),-\frac{1}{\beta_{0}}\right]=\frac{\beta_{0}-(\lambda-1)}{\beta_{0}(\lambda-1)-\left(\lambda^{2}-\lambda-1\right)} . \tag{3.27}
\end{equation*}
$$

At this point, it is convenient to introduce

$$
\begin{equation*}
\rho, \rho^{*}=1-\frac{\lambda}{2} \pm\left(1+\left(1-\frac{\lambda}{2}\right)^{2}\right)^{1 / 2} \tag{3.28}
\end{equation*}
$$

so that $\rho \rho^{*}=-1$. Then,

$$
\beta_{0}=\lambda-\rho^{*}
$$

Substituting in (3.27),

$$
\gamma_{0}=\lambda+\frac{\rho^{*}-1}{\rho^{*}(\lambda-1)-1}=\lambda+\rho
$$

The reverse β_{p-1}^{\prime} can be extended to a periodic $\lambda \mathrm{CF}$ of period p with a decrease in value. We denote this fraction by β_{p-1}^{\prime} also. Hence

$$
\begin{gather*}
\beta_{t p-1}^{\prime}=\left[\overline{B(s-1)-\frac{1}{2 \lambda},-\frac{1}{B(s)},-\frac{1}{2 \lambda}} ;-\frac{1}{B(s-1)}\right]=\frac{1}{2 \lambda-\gamma_{0}} \tag{3.29}\\
\gamma_{t p-1}^{\prime}=\frac{1}{2 \lambda-\beta_{0}}
\end{gather*}
$$

These values enable us to calculate (see (2.4))

$$
\begin{align*}
& m_{t p-1}\left(\beta_{0}\right)=\beta_{t p}-\frac{1}{\beta_{t p-1}^{\prime}}=\beta_{0}-\left(2 \lambda-\gamma_{0}\right) \\
&=\lambda-\rho^{*}+\lambda+\rho-2 \lambda \tag{3.30}\\
&=2\left(1+\left(1-\frac{\lambda}{2}\right)^{2}\right)^{1 / 2}=h_{q} \\
& m_{t p-1}\left(\gamma_{0}\right)=\gamma_{0}-\left(2 \lambda-\beta_{0}\right)=h_{q} \tag{3.31}
\end{align*}
$$

On the other hand, if $v \not \equiv 0(\bmod p), m_{v-1}\left(\beta_{0}\right)<\beta_{v}=\lambda-\cdots<\lambda<h_{q}$. So,

$$
\varlimsup_{n \rightarrow \infty} m_{n-1}\left(\beta_{0}\right)=h_{q}=\varlimsup_{n \rightarrow \infty} m_{n-1}\left(\gamma_{0}\right)
$$

that is,

$$
\begin{equation*}
M\left(\beta_{0}\right)=M\left(\gamma_{0}\right)=h \tag{3.32}
\end{equation*}
$$

Next, we wish to show that β_{0} and γ_{0} are unique up to G-equivalence. Recall that $q \geq 7$, so $s \geq 2$. Define

$$
\begin{gather*}
\gamma_{0}^{*}=\left[2 \lambda,-\frac{1}{B(s-1)},-\frac{1}{T}\right], \quad T=\left[2 \lambda,-\frac{1}{B\left(l_{1}\right)}, \ldots\right], \tag{3.33}\\
\beta_{0}^{*}=\left[2 \lambda,-\frac{1}{B(s)},-\frac{1}{T}\right], \quad T=\left[2 \lambda,-\frac{1}{B\left(k_{1}\right)}, \ldots\right] . \tag{3.34}
\end{gather*}
$$

We shall show that every $\alpha_{0} \nsim \beta_{0}$ can be replaced by β_{0}^{*} or γ_{0}^{*} with a decrease in $M\left(\alpha_{0}\right)$.

Consider γ_{0}^{*}. Since it is reduced, we have $l_{j} \leq s, l_{j}+l_{j+1} \leq 2 s-1, j \geq 1$, by conditions (3.1) and (3.5). Replace $l_{j} \leq s-1$ by $l_{j}=s-1$; this decreases γ_{0}^{*}. We say the sequence $\left\{l_{j}\right\}$ is alternating if the entries $s-1$ and s occur in succession. Clearly, if $\lambda \mathrm{CF} \gamma_{0}^{*}$ ends in an infinite alternating sequence, then $\gamma_{0}^{*} \sim \gamma_{0}$.

Suppose, on the contrary, that for some odd t the sequence $l_{1}=s, l_{2}, \ldots$, $l_{t+1}=s-1$ is alternating, but $\left(l_{t+2}, l_{t+3}, \ldots, l_{t+k+3}\right)=(s, s-1, \ldots, s-1, s)$. There are k entries $s-1$. If k is odd, we can replace every other $s-1$ by s to obtain an alternating sequence. Suppose k is even, $k=4$, say. Then $\left(l_{t+3}, \ldots, l_{t+6}\right)$ can be replaced by $(s-1, s, s-1, s-1)$. Thus, the sequence we must treat is $(s, s-1, s-1, s)$, and we wish to replace it by $(s, s-1, s, s-1)$. This applies to any even k.

What we must prove is that

$$
\begin{equation*}
\left[B(s-1),-\frac{1}{2 \lambda},-\frac{1}{B(s)},-\frac{1}{U}\right]>\left[B(s),-\frac{1}{2 \lambda},-\frac{1}{B(s-1)},-\frac{1}{U}\right], \tag{*}
\end{equation*}
$$

where $U=\left[2 \lambda,-1 / B\left(l_{1}\right),-1 / V\right]=\lambda+[\lambda, \ldots] \geq \lambda+2 / \lambda>\lambda+1, U<2 \lambda$. By writing the left member as $[\lambda,-1 / B(s-2), \ldots]$, and similarly for the right member, and repeating the process, we eventually bring ($*$) to the form

$$
\begin{equation*}
\left[\lambda,-\frac{1}{B(s)},-\frac{1}{U}\right]>\left[0,-\frac{1}{2 \lambda},-\frac{1}{B(s-1)},-\frac{1}{U}\right] . \tag{**}
\end{equation*}
$$

Since $U>\lambda+1$,

$$
\left[B(s),-\frac{1}{U}\right]>\left[B(s),-\frac{1}{\lambda+1}\right]>\frac{2}{\lambda},
$$

from which it follows that the left member of (**) is positive. But

$$
[2 \lambda,-1 / B(s-1),-1 / U]>\lambda+[B(s),-1 / U]>0
$$

so the right member of (**) is negative. This establishes $(*)$. We have shown that $\gamma_{0}^{*} \geq \gamma_{0}$. Similarly, $\beta_{0}^{*} \geq \beta_{0}$.

If n is an index for which $\gamma_{n}^{*}=[2 \lambda,-1 / B(s-1), \ldots]$, then by the previous reasoning

$$
\gamma_{n}^{*} \geq \gamma_{0}=\lambda+\rho, \quad \beta_{n}^{*} \geq \beta_{0}=\lambda-\rho^{*}
$$

Now,

$$
\begin{aligned}
\left(\gamma_{n-1}^{*}\right)^{\prime} & =\left[B\left(l_{k}\right),-\frac{1}{2 \lambda},-\frac{1}{B\left(l_{k-1}\right)},-\frac{1}{W}\right] \\
& \geq\left[B(s),-\frac{1}{2 \lambda},-\frac{1}{B(s-1)},-\frac{1}{W}\right]
\end{aligned}
$$

where $W=\left[2 \lambda,-1 / B\left(l_{k-2}\right), \ldots\right]$, with a finite alternating sequence l_{k-2}, l_{k-3}, \ldots, l_{1}. This can be extended to an infinite alternating sequence with a decrease in the value of W. Hence,

$$
\left(\gamma_{\lambda-1}^{*}\right)^{\prime} \geq \beta_{1}^{*}=\frac{1}{2 \lambda-\beta_{0}^{*}}
$$

It follows that

$$
\begin{align*}
m_{n-1}\left(\gamma_{n}^{*}\right) & =\gamma_{n}^{*}-\frac{1}{\left(\gamma_{n-1}^{*}\right)^{\prime}} \geq \gamma_{0}-\left(2 \lambda-\beta_{0}^{*}\right) \tag{3.35}\\
& \geq \gamma_{0}+\beta_{0}-2 \lambda=h_{q}
\end{align*}
$$

see (3.30). Similarly,

$$
\begin{equation*}
m_{n-1}\left(\beta_{n}^{*}\right) \geq h_{q} \tag{3.36}
\end{equation*}
$$

On the other hand, if $r_{n}=1$, we have $m_{n-1}\left(\beta_{n}\right)<\lambda-\cdots<h_{q}$. We have proved

$$
\begin{equation*}
M\left(\beta_{0}^{*}\right)=\varlimsup_{\nu \rightarrow \infty} m_{\nu}\left(\beta_{0}^{*}\right) \geq M\left(\beta_{0}\right)=h_{q}, \quad M\left(\gamma_{0}^{*}\right) \geq h_{q} \tag{3.37}
\end{equation*}
$$

equality occurring if and only if $\beta_{0}^{*}, \gamma_{0}^{*} \sim \beta_{0}$.
Putting (3.13), (3.15), (3.35), and (3.36) together, we get
Lemma 2. If α_{0} has all $\varepsilon_{\nu}=-1$ and $r_{n}=2$, then

$$
\begin{equation*}
m_{n-1}\left(\alpha_{0}\right) \geq h_{q} \tag{3.38}
\end{equation*}
$$

Hence,

$$
M\left(\alpha_{0}\right) \geq h_{q}, \quad q \geq 5
$$

with equality if and only if $\alpha_{0} \sim \rho$.
The last statement follows since $r_{n}=2$ must occur infinitely often.
To complete the proof of Theorem 1, we proceed as follows. If $\varepsilon_{\mu}=1$ occurs in α_{0} only a finite number of times, we may assume it never occurs; then by (3.2), $r_{\mu} \geq 2$ infinitely often. Hence $M\left(\alpha_{0}\right) \geq h_{q}$ by Lemma 2, with the cases of equality mentioned there. So we now assume $\varepsilon_{\mu}=1$ occurs infinitely
often but not always. We look for the largest block of terms with $\varepsilon=-1$, i.e., bounded by $\varepsilon=+1$ at both ends. Denote this block by

$$
\alpha_{\mu \nu}=\left[r_{\mu} \lambda,-\frac{1}{r_{\mu+1} \lambda}, \ldots, \frac{1}{r_{\nu} \lambda}\right], \quad \varepsilon_{\mu}=\varepsilon_{\nu+1}=1
$$

The terms with $r_{t}=1$ yield only $m_{t-1}<\lambda<h_{q}, \mu+1 \leq t \leq \nu$. So let $r_{n}=2$ for an n with $\mu+1 \leq n \leq \nu$. If $\alpha_{\mu \nu}$ does not end in $B(s)$, $-1 / 2 \lambda,-1 / B(s)$, we can adjoin U with all $\varepsilon=-1$ so that $\left[\alpha_{\mu \nu},-1 / U\right]$ is reduced: for example, we could take a periodic $U=[2 \lambda,-1 / 2 \lambda, \ldots]$. Then by (2.2), $\alpha_{n}>\alpha_{n \nu}>\left[\alpha_{n \nu},-1 / U\right]$. Similarly, $\alpha_{n-1}^{\prime}>\alpha_{n-1, \mu}^{\prime}>\left[\alpha_{n-1, \mu}^{\prime},-1 / V\right]$, where $V=\left[r_{\mu-1}^{\prime} \lambda,-1 / r_{\mu-2}^{\prime} \lambda, \ldots,-1 / r_{1}^{\prime} \lambda\right]$ is chosen so that $\left[\alpha_{n-1, \mu}^{\prime},-1 / V\right]$ is reduced. Then, $\delta_{0}:=\left[V^{\prime},-1 / \alpha_{\mu \nu},-1 / U\right]$ has all $\varepsilon=-1$ and is reduced. By Lemma 2,

$$
\begin{equation*}
m_{n-1}\left(\alpha_{0}\right) \geq m_{n-1}\left(\delta_{0}\right) \geq h_{q}, \quad r_{n} \geq 2 \tag{3.39}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
M\left(\alpha_{0}\right) \geq M\left(\delta_{0}\right) \geq h_{q} \tag{3.40}
\end{equation*}
$$

When $\alpha_{\mu \nu}$ ends with $B(s),-1 / 2 \lambda,-1 / B(s)$, there is no U satisfying the required conditions because of (3.3). We derive successively, using the values (3.25):

$$
\begin{gathered}
\alpha_{0}=[\ldots,-1 / B(s), 1 / T], \\
{\left[B(s), \frac{1}{T}\right]=\frac{T P_{s-1}+P_{s-2}}{T Q_{s-1}+Q_{s-2}}>\frac{1}{\lambda-1},} \\
{\left[2 \lambda,-\frac{1}{B(s)}, \frac{1}{T}\right]>\lambda+1,} \\
{\left[B(s),-\frac{1}{2 \lambda},-\frac{1}{B(s)}, \frac{1}{T}\right]>\left[B(s),-\frac{1}{\lambda+1}\right]=\frac{2}{\lambda},} \\
{\left[2 \lambda,-\frac{1}{B(s)}, \ldots, \frac{1}{T}\right]>\left[2 \lambda,-\frac{\lambda}{2}\right]=\frac{3 \lambda}{2},}
\end{gathered}
$$

and finally

$$
\alpha_{n} \geq \eta_{n}:=\left[2 \lambda,-\frac{1}{B\left(l_{1}\right)}, \ldots,-\frac{1}{B\left(l_{k}\right)},-\frac{1}{3 \lambda / 2}\right]
$$

We assign $l_{j}=s$ or $s-1$ in alternation, so that η_{n} is of the form β_{0}^{*} in (3.34) or γ_{0}^{*} in (3.33); then from (3.37), (3.36) we again get (3.39), (3.40).

The final case is: all $\varepsilon=+1$. If $1 / r_{n} \lambda$ occurs with $r_{n} \geq 2$, then $m_{n-1} \geq$ $\alpha_{n}>2 \lambda>h_{q}$. When $1 / r_{n} \lambda$ occurs infinitely often, we get

$$
M(\alpha)=\varlimsup_{n \rightarrow \infty} m_{n-1}(\alpha) \geq 2 \lambda>h_{q}
$$

Otherwise, we may assume $1 / r \lambda, r \geq 2$, never occurs and

$$
\alpha_{n}=\left[\lambda, \frac{1}{\lambda}, \ldots\right]=\left[\lambda, \frac{1}{\alpha_{n}}\right]=\frac{1}{2}\left(\lambda+\left(\lambda^{2}+4\right)^{1 / 2}\right)=: \mu
$$

So,

$$
\begin{equation*}
m_{n-1}=\mu+\frac{1}{\mu}=\left(\lambda^{2}+4\right)^{1 / 2}>h_{q} \tag{3.41}
\end{equation*}
$$

as a small calculation shows, and this implies

$$
M\left(\alpha_{0}\right)>h_{q} .
$$

In all cases, then, $M\left(\alpha_{0}\right)$ is bounded below by h_{q}, with the cases of equality stated in (3.12), (3.37), (3.38). This completes the proof of Theorem 1.

4. The local Hurwitz constant

In this section we shall consider the local Hurwitz constant, i.e., $m_{i}\left(\alpha_{0}\right)$. Our object is to compare m_{i} with h_{q}.

We first use a geometric method. Let α be G-irrational. The Ford circle C_{n} is defined by

$$
C_{n}:\left|z-\left(\frac{P_{n}}{Q_{n}}+\frac{i}{2 Q_{n}^{2}}\right)\right|=\frac{1}{2 Q_{n}^{2}},
$$

where P_{n} / Q_{n} are the convergents of α. Different C_{n} do not overlap; C_{n} and C_{m} are tangent externally if and only if $m=n+1$ or $n-1$. These assertions follow easily from the determinant condition (2.2). Also from (2.3), (2.12), with $\alpha=\left[r_{0} \lambda, \varepsilon_{1} / r_{1} \lambda, \ldots\right]$, we have

$$
\operatorname{sgn}\left(\alpha-\frac{P_{n-1}}{Q_{n-1}}\right)= \pm \operatorname{sgn}\left(\alpha-\frac{P_{n}}{Q_{n}}\right)
$$

according as $\varepsilon_{n+1}=-1$ or +1 .
Suppose $\varepsilon_{n+1}=-1$. Then α is on the same side of both P_{n} / Q_{n} and P_{n-1} / Q_{n-1}. It follows that

$$
\begin{equation*}
\left|\alpha-\frac{P_{i}}{Q_{i}}\right|>\frac{1}{Q_{i}^{2}} \quad \text { for } i=n-1 \text { or } n . \tag{4.1}
\end{equation*}
$$

Equality is impossible because P_{i} / Q_{i} is G-rational, but α is G-irrational.
Next suppose $\varepsilon_{n+1}=1$. Then α lies between P_{n} / Q_{n} and P_{n-1} / Q_{n-1}. Let (i, j) be a permutation of $(n-1, n)$. Then,

$$
\begin{equation*}
\left|\alpha-\frac{P_{i}}{Q_{i}}\right|<\frac{1}{2 Q_{i}^{2}}, \quad\left|\alpha-\frac{P_{j}}{Q_{j}}\right|>\frac{1}{2 Q_{j}^{2}} \tag{4.2}
\end{equation*}
$$

Equality can occur only if α coincides with the real projection of the point of tangency of the Ford circles, which is impossible because α is G-irrational. Hence,
Theorem 2. If $\varepsilon_{n+1}=1$, we have $m_{n-1}>2, m_{n}<2$, or $m_{n-1}<2, m_{n}>2$.
An elegant algebraic proof of this theorem in the rational case $(q=3)$ was given by K. Th. Vahlen [6].

Theorem 2 holds for all $q \geq 4$, even or odd. Since $h_{q}=2$ when q is even, it provides an estimate of the desired type for even q. We now concentrate on odd q.

Theorem 3. Let q be odd. If $r_{n} \geq 2$ and $\varepsilon_{n-1}=1$, then $m_{n-1} \geq h_{q}$.
Theorem 3 is a special case of (3.39).
If we drop the assumption $r_{n} \geq 2$, we can have two consecutive $m_{i}<h_{q}$, as we see from the following example: let

$$
\begin{gather*}
\lambda=\lambda_{7}=1.80, \ldots, r_{n-1}=4 \\
\alpha_{0}=[\ldots,-1 / 4 \lambda, 1 / \lambda,-1 / \lambda,-1 / \lambda, \ldots] \tag{4.3}
\end{gather*}
$$

for which $m_{n}<\lambda, m_{n-1}<1.97<2$. We make further assumptions on the ε_{i}.
Theorem 4. Let q be odd. If $\varepsilon_{n+1}=\varepsilon_{n+2}=1$, then $m_{i} \geq\left(\lambda^{2}+4\right)^{1 / 2}>h_{q}$ for at least one of $i=n-1, n, n+1$.

The proof is modelled after one by M. Fujiwara [2]; see also F. Bagemihl and J. R. McLaughlin [1]. In contradiction to the conclusion

$$
\begin{equation*}
m_{i}(\alpha) \geq\left(\lambda^{2}+4\right)^{1 / 2} \tag{4.4}
\end{equation*}
$$

we can assert that

$$
\begin{equation*}
\left|\alpha-\frac{P_{j}}{Q_{j}}\right|>\frac{1}{\left(\lambda^{2}+4\right)^{1 / 2} Q_{j}^{2}}, \quad n-1 \leq j \leq n+1 . \tag{4.5}
\end{equation*}
$$

We observe from (2.3) that $\alpha-P_{n-1} / Q_{n-1}$ and $\alpha-P_{n} / Q_{n}$ have opposite signs, in view of $\varepsilon_{n+1}=1$. Hence,

$$
\frac{1}{\left(\lambda^{2}+4\right)^{1 / 2}}\left(\frac{1}{Q_{n-1}^{2}}+\frac{1}{Q_{n}^{2}}\right)<\left|\alpha-\frac{P_{n-1}}{Q_{n-1}}\right|+\left|\alpha-\frac{P_{n}}{Q_{n}}\right|=\frac{1}{Q_{n} Q_{n-1}} .
$$

Write

$$
\left(\lambda^{2}+4\right)^{1 / 2}=u+\frac{1}{u}, \quad u>\lambda
$$

then

$$
\frac{Q_{n}^{2}}{Q_{n-1}^{2}}-\left(\lambda^{2}+4\right)^{1 / 2} \frac{Q_{n}}{Q_{n-1}}+1=\left(\frac{Q_{n}}{Q_{n-1}}-\frac{1}{u}\right)\left(\frac{Q_{n}}{Q_{n-1}}-u\right)<0
$$

Now $Q_{n} / Q_{n-1}-1 / u>1-1=0$, so $Q_{n} / Q_{n-1}-u<0$, that is,

$$
\begin{equation*}
\frac{Q_{n}}{Q_{n-1}}<u \tag{4.6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{Q_{n-1}}{Q_{n}}>\frac{1}{u} \tag{4.7}
\end{equation*}
$$

Replacing n by $n+1$ in (4.6)-recall $\varepsilon_{n+2}=1$-we get

$$
\frac{Q_{n+1}}{Q_{n}}<u
$$

Therefore,

$$
u>\frac{Q_{n+1}}{Q_{n}}=r_{n+1} \lambda+\varepsilon_{n+1} \frac{Q_{n-1}}{Q_{n}} \geq \lambda+\frac{Q_{n-1}}{Q_{n}}
$$

yielding

$$
\frac{Q_{n-1}}{Q_{n}}<u-\lambda
$$

But

$$
\left(u-\frac{1}{u}\right)^{2}=\left(u+\frac{1}{u}\right)^{2}-4=\lambda^{2},
$$

and so

$$
\frac{Q_{n-1}}{Q_{n}}<\frac{1}{u},
$$

contradicting (4.7). This completes the proof of Theorem 4.
Note added in proof. In a recent letter Thomas A. Schmidt has pointed out an error in [4] that carries over to the present paper. It can be corrected as follows. Replace the two paragraphs following (1.5) by the following:

We now consider the approximation of a G-irrational α_{0} by the convergents P_{n} / Q_{n} of its λ CF (1.4). Note that in (1.1) the fraction $k / m \in G(\infty)$ determines k and m uniquely up to sign, since

$$
\left(\begin{array}{cc}
k & \cdot \\
m & \cdot
\end{array}\right)^{-1}\left(\begin{array}{cc}
k_{1} & \cdot \\
m_{1} & \cdot
\end{array}\right)=\left(\begin{array}{cc}
\cdot & \cdot \\
0 & \cdot
\end{array}\right)= \pm\left(\begin{array}{cc}
1 & \cdot \\
0 & 1
\end{array}\right)
$$

when $k / m=k_{1} / m_{1}$. Thus we write

$$
\begin{equation*}
\alpha_{0}-\frac{P_{n-1}}{Q_{n-1}}=\frac{(-1)^{n-1} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}}{m_{n-1} Q_{n-1}^{2}}, \quad m_{n-1}=m_{n-1}\left(\alpha_{0}\right) \tag{1.6}
\end{equation*}
$$

and study $m_{n-1}\left(\alpha_{0}\right)$. Clearly,

$$
\begin{equation*}
M\left(\alpha_{0}\right)=\varlimsup_{n \rightarrow \infty} m_{n-1}\left(\alpha_{0}\right), \quad h_{q}^{\prime}=\inf _{\alpha_{0}} M\left(\alpha_{0}\right) \tag{1.7}
\end{equation*}
$$

We call $m_{n}\left(\alpha_{0}\right)$ a local Hurwitz constant.
Similar changes are required in [4]. In particular, Theorem 3 should be eliminated.

Bibliography

1. F. Bagemihl and J. R. McLaughlin, Generalization of some classical theorems concerning triples of consecutive convergents to simple continued fractions, J. Reine Angew. Math. 221 (1966), 146-149.
2. M. Fujiwara, Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen, Tôhoku Math. J. 14 (1918), 109-115.
3. A. Haas and C. Series, The Hurwitz constant and Diophantine approximation on Hecke groups, J. London Math. Soc. 34 (1986), 219-234.
4. J. Lehner, Diophantine approximation on Hecke groups, Glasgow Math. J. 27 (1985), 117127.
5. D. Rosen, A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J. 21 (1954), 549-564.
6. K. Th. Vahlen, Ueber Näherungswerthe und Kettenbrüche, J. Reine Angew. Math. 115 (1895), 221-233.

314 N. Sharon Way, Jamesburg, New Jersey 08831

[^0]: Received August 31, 1988; revised August 21, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11F03.

